domingo, 30 de maio de 2010

Sistema de recomendação para bibliotecas digitais sob a perspectiva da web semântica


Dissertação de Mestrado defendida por Giseli Rabello Lopes na Universidade Federal do Rio Grande do Sul

Atualmente, pesquisadores e acadêmicos têm beneficiado-se muito com o crescimento acelerado das tecnologias Web, pois os resultados de pesquisa podem ser publicados e acessados eletronicamente tão logo a mesma tenha sido realizada. Esta possibilidade é vantajosa na medida em que minimiza as barreiras de tempo e espaço associadas à publicação tradicional. Neste contexto, surgem as Bibliotecas Digitais como repositórios de dados que, além dos documentos digitais propriamente ditos, ou de apontadores para estes documentos, armazenam os metadados associados. Para permitir que diferentes Bibliotecas Digitais possam interoperar surgiu a Open Archives Initiative (OAI) e, para resolver a questão da padronização dos metadados utilizados pelos repositórios, foi criado o formato Dublin Core (DC). Por outro lado, a enorme quantidade de documentos digitais disponíveis na Web tem causado o fenômeno conhecido como 'sobrecarga de informação'. Com o objetivo de suprir esta dificuldade, Sistemas de Recomendação têm sido propostos e desenvolvidos. Estes sistemas visam prover uma interface alternativa para tecnologias de filtragem e recuperação de informações, tendo como foco a predição daqueles itens ou partes da informação que o usuário acharia interessante e útil. Portanto, os Sistemas de Recomendação atuam baseados em personalização da informação sendo que as predições geralmente são realizadas utilizando-se um perfil de cada usuário. A personalização está relacionada com o modo pelo qual a informação e serviços podem ser ajustados às necessidades específicas de um usuário ou comunidade. Esta dissertação descreve um Sistema de Recomendação de artigos científicos, armazenados em bibliotecas digitais. Este sistema é dirigido à comunidade científica da área da Ciência da Computação. Tecnologicamente, o sistema proposto foi desenvolvido sob a perspectiva da Web Semântica, à medida que faz uso de suas tecnologias emergentes tais como: uso de metadados padrão para a descrição de documentos - Dublin Core, uso do padrão XML para a descrição do perfil do usuário - Currículo Lattes, e provedores de serviços e de dados (OAI) envolvidos no processo de geração das recomendações. Este trabalho ainda apresenta e discute alguns resultados de experimentos baseados em avaliações quantitativas e qualitativas de recomendações geradas pelo sistema.


Clique aqui para o texto completo [pdf - 69 p. ]
Imagem: Internet

Nenhum comentário:

Postar um comentário